
PRINCIPLES OF OPERATING SYSTEMS

1

LECTURE- 6
Principles of

Operating Systems
PROCESS SCHEDULING,

SCHEDULERS

Process Scheduling
Process (PCB) moves from queue to queue
When does it move? Where? A scheduling decision

Process Scheduling Queues

 Job Queue - set of all processes in the system
 Ready Queue - set of all processes residing in main

memory, ready and waiting to execute.
 Device Queues - set of processes waiting for an I/O

device.
 Process migration between the various queues.
 Queue Structures - typically linked list, circular list

etc.

Process Queues

Device
Queue

Ready
Queue

Process
Control
Block

Enabling Concurrency and Protection:
Multiplex processes

 Only one process (PCB) active at a time
 Current state of process held in PCB:

 “snapshot” of the execution and protection environment
 Process needs CPU, resources

 Give out CPU time to different processes
(Scheduling):
 Only one process “running” at a time
 Give more time to important processes

 Give pieces of resources to different processes
(Protection):
 Controlled access to non-CPU resources

 E.g. Memory Mapping: Give each process their own
address space

Enabling Concurrency: Context Switch

 Task that switches CPU from one process to
another process

 the CPU must save the PCB state of the old process and
load the saved PCB state of the new process.

 Context-switch time is overhead
 System does no useful work while switching
 Overhead sets minimum practical switching time; can

become a bottleneck

 Time for context switch is dependent on
hardware support (1- 1000 microseconds).

CPU Switch From Process to Process

 Code executed in kernel above is overhead
 Overhead sets minimum practical switching time

Schedulers

 Long-term scheduler (or job scheduler) -
 selects which processes should be brought into the ready

queue.
 invoked very infrequently (seconds, minutes); may be slow.
 controls the degree of multiprogramming

 Short term scheduler (or CPU scheduler) -
 selects which process should execute next and allocates

CPU.
 invoked very frequently (milliseconds) - must be very fast

 Medium Term Scheduler
 swaps out process temporarily
 balances load for better throughput

Medium Term (Time-sharing)
Scheduler

Process Profiles

 I/O bound process -
 spends more time in I/O, short CPU bursts, CPU

underutilized.

 CPU bound process -
 spends more time doing computations; few very long CPU

bursts, I/O underutilized.

 The right job mix:
 Long term scheduler - admits jobs to keep load balanced

between I/O and CPU bound processes
 Medium term scheduler – ensures the right mix (by

sometimes swapping out jobs and resuming them later)

Process Creation

 Processes are created and deleted
dynamically

 Process which creates another process is
called a parent process; the created process
is called a child process.

 Result is a tree of processes
 e.g. UNIX - processes have dependencies and form a

hierarchy.

 Resources required when creating process
 CPU time, files, memory, I/O devices etc.

UNIX Process Hierarchy

What does it take to create a process?

 Must construct new PCB
 Inexpensive

 Must set up new page tables for address space
 More expensive

 Copy data from parent process? (Unix fork())
 Semantics of Unix fork() are that the child process gets a

complete copy of the parent memory and I/O state
 Originally very expensive
 Much less expensive with “copy on write”

 Copy I/O state (file handles, etc)
 Medium expense

Process Creation

 Resource sharing
 Parent and children share all resources.
 Children share subset of parent’s resources - prevents

many processes from overloading the system.
 Parent and children share no resources.

 Execution
 Parent and child execute concurrently.
 Parent waits until child has terminated.

 Address Space
 Child process is duplicate of parent process.
 Child process has a program loaded into it.

UNIX Process Creation

 Fork system call creates new processes

 execve system call is used after a fork to
replace the processes memory space with a
new program.

Process Termination

 Process executes last statement and asks
the operating system to delete it (exit).

 Output data from child to parent (via wait).
 Process’ resources are deallocated by operating system.

 Parent may terminate execution of child
processes.

 Child has exceeded allocated resources.
 Task assigned to child is no longer required.
 Parent is exiting
 OS does not allow child to continue if parent terminates
 Cascading termination

